561 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    A dual isotopic approach using radioactive phosphorus and the isotopic composition of oxygen associated to phosphorus to understand plant reaction to a change in P nutrition

    Get PDF
    Abstract Background Changing the phosphorus (P) nutrition leads to changes in plant metabolism. The aim of this study was to investigate how these changes are reflected in the distribution of 33P and the isotopic composition of oxygen associated to P (ή18OP) in different plant parts of soybean (Glycine max cv. Toliman). Two P pools were extracted sequentially with 0.3 M trichloroacetic acid (TCA P) and 10 M nitric acid (HNO3; residual P). Results The ή18OP of TCA P in the old leaves of the − P plants (23.8‰) significantly decreased compared to the + P plants (27.4‰). The 33P data point to an enhanced mobilisation of P from residual P in the old leaves of the − P plants compared to the + P plants. Conclusions Omitting P for 10 days lead to a translocation of P from source to sink organs in soybeans. This was accompanied by a significant lowering of the ή18OP of TCA P in the source organs due to the enzymatic hydrolysis of organic P. Combining 33P and ή18OP can provide useful insights in plant responses to P omission at an early stage

    Forms and exchangeability of inorganic phosphate in composted solid organic wastes

    Get PDF
    Switzerland yearly produces more than 260,000 Mg of compost, two thirds of which is recycled in agriculture and horticulture. This research was undertaken to examine the forms and availability of inorganic P (Pi) in Swiss composts made from solid kitchen and garden wastes using the isotopic exchange kinetic technique, a sequential Pi extraction and magic angle spinning (MAS) solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. The different approaches described in this paper demonstrate the presence of a complex mixture of Pi species in the studied composts. Isotopic exchange experiments and sequential extraction showed that these composts contained relatively large concentrations of rapidly available Pi. Significant correlations were observed between the concentration of water-soluble Pi (Cp), and the total N, C and P content of composts suggesting that organic substances partly controlled the amount of rapidly available Pi. Significant correlations were observed in alkaline composts between the amount of Pi which can not be exchanged within 3 months and the total P and Ca content. In alkaline composts solid-state MAS 31P NMR results suggested the presence of a range of slightly soluble and poorly crystallized Ca-P compounds such as apatites or octacalcium phosphates and of organic P compounds. The slowly or non-exchangeable Pi present in these composts could therefore be bound to Ca in the form of apatites or octacalcium phosphate

    Multiview video representations for quality-scalable navigation

    Get PDF
    Interactive multiview video (IMV) applications offer to users the freedom of selecting their preferred viewpoint. Usually, in these systems texture and depth maps of captured views are available at the user side, as they permit the rendering of intermediate virtual views. However, the virtual views' quality depends on the distance to the available views used as references and on their quality, which is generally constrained by the heterogeneous capabilities of the users. In this context, this work proposes an IMV scalable system, where views are optimally organized in layers, each one offering an incremental improvement in the interactive navigation quality. We propose a distortion model for the rendered virtual views and an algorithm that selects the optimal views' subset per layer. Simulation results show the efficiency of the proposed distortion model, and that the careful choice of reference cameras permits to have a graceful quality degradation for clients with limited capabilities

    Rate distortion optimized graph partitioning for omnidirectional image coding

    Get PDF
    International audienceOmnidirectional images are spherical signals captured by cameras with 360-degree field of view. In order to be compressed using existing encoders, these signals are mapped to planar domain. A commonly used planar representation is the equirectangular one, which corresponds to a non uniform sampling pattern on the spherical surface. This particularity is not explored in traditional image compression schemes, which treat the input signal as a classical perspective image. In this work, we build a graph-based coder adapted to the spherical surface. We build a graph directly on the sphere. Then, to have computationally feasible graph transforms, we propose a rate-distortion optimized graph partitioning algorithm to achieve an effective trade-off between the distortion of the reconstructed signals, the smoothness of the signal on each subgraph, and the cost of coding the graph partitioning description. Experimental results demonstrate that our method outperforms JPEG coding of planar equirectangular images

    Graph-Based Detection of Seams In 360-Degree Images

    Get PDF
    In this paper, we propose an algorithm to detect a specific kind of distortions, referred to as seams, which commonly oc- cur when a 360-degree image is represented in planar domain by projecting the sphere to a polyhedron, e.g, via the Cube Map (CM) projection, and undergoes lossy compression. The proposed algorithm exploits a graph-based representation to account for the actual sampling density of the 360-degree sig- nal in the native spherical domain. The CM image is con- sidered as a signal lying on a graph defined on the spherical surface. The spectra of the processed and the original sig- nals, computed by applying the Graph Fourier Transform, are compared to detect the seams. To test our method a dataset of compressed CM 360-degree images, annotated by experts, has been created. The performance of the proposed algorithm is compared to those achieved by baseline metrics, as well as to the same approach based on spectral comparison but ignor- ing the spherical nature of the signal. The experimental results show that the proposed method has the best performance and can successfully detect up to approximately 90% of visible seams on our dataset

    The molecular size continuum of soil organic phosphorus and its chemical associations

    Get PDF
    The chemical nature of most organic P (Porg) in soil remains ‘unresolved’ but is accounted for by a broad signal in the phosphomonoester region of solution 31P nuclear magnetic resonance (NMR) spectra. The molecular size range of this broad NMR signal and its molecular structure remain unclear. The aim of this study was to elucidate the chemical nature of Porg with increasing molecular size in soil extracts combining size exclusion chromatography (SEC) with solution 31P NMR spectroscopy. Gel-filtration SEC was carried out on NaOH-EDTA extracts of four soils (range 238-1135 mg Porg/kgsoil) to collect fractions with molecular sizes of 70 kDa. These were then analysed by NMR spectroscopy. Organic P was detected across the entire molecular size continuum from 70 kDa. Concentrations of Porg in the >10kDa fraction ranged from 107 to 427 mg P/kgsoil and exhibited on average three to four broad signals in the phosphomonoester region of NMR spectra. These broad signals were most prominent in the 10-20 and 20-50 kDa fractions, accounting for on average 77 % and 74 % of total phosphomonoesters, respectively. Our study demonstrates that the broad signal is present in all investigated molecular size fractions and comprises on average three to four components of varying NMR peak line width (20 to 250 Hz). The stereoisomers myo- and scyllo-inositol hexakisphosphates (IP6) were also present across multiple molecular size ranges but were predominant in the 5-10 kDa fraction. The proportion of IP associated with large molecular size fractions >10 kDa was on average 23 % (SD=39 %) of total IP across all soils. These findings suggest that stabilisation of IP in soil includes processes associated with the organic phase

    Association study of two interleukin-1 gene loci with essential hypertension in a Pakistani Pathan population

    Get PDF
    An association study of IL-1 beta -511C/T and IL-1 RN 86 bp VNTR polymorphisms with essential hypertension was carried out in a sample population of 500 Pakistani Pathan subjects selected randomly, comprising groups of 235 subjects with hypertension and 265 controls. The distribution of both genotypes and alleles was not statistically different in cases and controls. In conclusion, IL-1 beta -511C/T and IL-1 RN 86 bp VNTR do not contribute to the aetiology of essential hypertension in the Pakistani Pathan population investigated here
    • 

    corecore